FOS 2001 Technik Aufgabengruppe A: Analysis

AI

- BE 1.0 Gegeben ist die reelle Funktion $f: x \mapsto 2 \cdot \frac{1 + \ln(x^2)}{x}$ in der maximal möglichen Definitionsmenge $D = \mathbb{R} \setminus \{0\}$.
 - 4 1.1 Zeigen Sie, dass der Graph der Funktion f punktsymmetrisch zum Koordinatenursprung verläuft, und bestimmen Sie die Nullstellen der Funktion f.
 - 5 | 1.2 Untersuchen Sie das Verhalten der Funktionswerte f(x) für $x \to 0$, $x \to +\infty$ und $x \to -\infty$.
 - 4 1.3 Berechnen Sie die erste und die zweite Ableitung der Funktion f.

 (Teilergebnis: $f'(x) = 2 \cdot \frac{1 \ln(x^2)}{x^2}$)
 - 9 1.4 Ermitteln Sie die Koordinaten und die Art der relativen Extremalpunkte sowie die Koordinaten der Wendepunkte des Graphen der Funktion f.
 - Zeichnen Sie den Graphen der Funktion f in ein kartesisches Koordinatensystem im Bereich 5 ≤ x ≤ 5. Verwenden Sie dazu die bisherigen Ergebnisse und berechnen Sie zusätzlich die Funktionswerte f(0,4), f(1) und f(5).
 Maßstab auf beiden Achsen: 1 LE = 1 cm.
 - Gegeben sind nun die reellen Funktionen $g_a : x \mapsto (1-a) \cdot x + \frac{2}{x}$ mit $a \in \mathbb{R}$ in der maximal möglichen Definitionsmenge $D = \mathbb{R} \setminus \{0\}$.
 - 5 2.1 Bestimmen Sie in Abhängigkeit von a die Anzahl und gegebenenfalls die Abszissen der Punkte, in denen der Graph der Funktion g_a waagrechte Tangenten besitzt.

Nun werden die Funktionen f aus Aufgabe 1 und $g_1: x \mapsto \frac{2}{x}$ (für a = 1) in $D = \mathbb{R} \setminus \{0\}$ betrachtet.

- Berechnen Sie für die Graphen der Funktionen f und g_1 die Abszissen ihrer Schnittpunkte, und zeichnen Sie den Graphen der Funktion g_1 im Bereich $-5 \le x \le 5$ in das Schaubild aus Teilaufgabe 1.5 ein.

 (Teilergebnis: $x_1 = -1$)

Fortsetzung siehe nächste Seite

BE | Fortsetzung A I :

- 5 2.4 Die Graphen der Funktionen f und g₁ und die Gerade mit der Gleichung x = -3 schließen im dritten Quadranten des Koordinatensystems ein endliches Flächenstück ein. Kennzeichnen Sie dieses Flächenstück in Ihrer Zeichnung und berechnen Sie die Maßzahl seines Flächeninhalts.
- 2.5 Ermitteln Sie eine Gleichung der Tangente t_k an den Graphen der Funktion g_1 an der Stelle x = k für $k \in IR$ und k > 0.

 Tragen Sie für den Sonderfall k = 2 die Tangente t_2 in Ihre Zeichnung ein.

 Weisen Sie nun nach, dass der Flächeninhalt des Dreiecks, das die Tangente t_k mit den Koordinatenachsen einschließt, von k unabhängig ist.

(Teilergebnis: $t_k : y = -\frac{2}{k^2} \cdot x + \frac{4}{k}$)